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Abstract

TastyPiano is a subjective sound–taste synesthetic machine that takes in an au-
dio piano piece and imagines a matching cocktail recipe — thereby achieving a
meaningful cross-modal domain transfer, from ears to taste buds.

1 Introduction

Could you ever see the color of happiness, feel the texture of the letter A, taste Duke Ellington’s
piano piece Take the A Train? These cross-modal experiences are called synesthesia, a rather strange
perceptual phenomenon in which the stimulation of one sensory domain induces an involuntary
experience in a different domain [1–3].1 Poetry, literature and even everyday expressions often
describe such experiences through synesthetic metaphors — “bright sound,” “warm color,” “sweet
voice” [4, 5].

In his book L’Écume des Jours, Boris Vian imagines the Pianocktail, a magical machine turning
any piano piece played on it into a sophisticated cocktail which sublimes the emotional experience
induced by the piece — a sound–taste synesthetic machine. Can such a machine be called to life?
With TastyPiano I use machine learning to democratize synesthesia, to let you taste music.

2 TastyPiano

A pianocktail implements a specific type of cross-modal domain transfer, from a source domain
(piano pieces) to a target domain (cocktail recipes). Any good domain transfer requires: 1) locality:
local variations in the source domain (similar piano pieces) must correspond to local variations in the
target domain (similar cocktails); 2) semantic alignment: a piece of music must be translated into
the corresponding cocktail [6]. Because synesthetic experiences are subjective in essence, semantic
alignment refers to the subjectivity of a particular pianocktail implementation.

Pipeline. An audio piano piece first enters the TastyPiano, gets transcribed to the symbolic midi
format, summarized into a piece representation, mapped to a corresponding cocktail representation
before it is finally decoded into a cocktail recipe (Fig. 1).
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Figure 1: Main components of the TastyPiano system.

1 To get a sense of the diversity of synesthetic experiences, visit reddit’s r/synesthesia or the synesthesia tree.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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https://www.thesynesthesiatree.com


Datasets. I curated a dataset of 30k piano midi files from existing sources [7–13] and by transcribing
YouTube and Spotify playlists with the model from [14]. For cocktails, I curated a dataset of 600
recipes with ingredients, preparation type and serving glass.

Learning Piece Representations. I first encode midi pieces into sequences using the structured
encoding [15, 16]: — 4 tokens per note (pitch, velocity, duration, time shift). Then, I learn piano piece
representations in two steps. Step 1 – BERT pretraining [17]: this optimizes token embeddings to
maximize the architecture’s ability to retrieve masked notes, see also MidiBERT [18] and MusicBERT
[19]. Step 2 – SentenceBERT finetuning [20]: this finetunes piece representations computed as the
average of token embeddings to improve the capture of perceptual distances between pieces. More
precisely, it uses a contrastive loss to get the embeddings of two sub-sequences from the same piece
closer while getting embeddings of two sub-sequences from different pieces further away [21].

Defining Cocktail Representations. I first define taste representations for each ingredient: sour,
sweet, alcohol, bitter, fruit, herb, complex, spicy, oaky, fizzy, colorful, eggy, then obtain cocktail
representations as the proportion-weighted average of their ingredient representations. This accounts
for the dilution expected from the cocktail preparation type and the alcoholic content [22].

Learning the Piece–Cocktail Synesthetic Mapping. I trained a translation variational auto-encoder
(VAE) from [6]. This VAE takes in either cocktail or piece representations, maps them to an inter-
modal latent space and decodes either cocktail or piece representations. Using standard VAE losses,
the architecture is trained to represent the latent distributions of both cocktail and piece representations
separately (using either cocktail input and outputs or piano pieces inputs and outputs respectively).
Then, I use a sliced-Wasserstein distance loss (SWD) to maximize the overlap between the latent
distributions in the two modalities. This allows translation, as a representation encoded from one
modality can now be decoded into the other. Finally, I use alignment classification losses to nudge the
semantic alignment to respect some grounding categories that I define. For instance, cuban latin jazz
and cuban cocktails (containing cuban rum, mint and lime) must be semantically aligned to the cuban
label, i.e. their respective latent embeddings must be classified as cuban by a one-layer classification
head placed on top of the inter-modal latent layer. At test time, the translation VAE encodes a piece
representation to parameters of the inter-modal latent distribution, samples an inter-modal latent code
and decodes it into a cocktail representation.

Generating Cocktails. A genetic algorithm (GA) optimization process is run to obtain the final
recipe from the generated cocktail representation. The GA initializes a population of random cocktails
characterized by their recipe (volume between 0 and max volume for each ingredient). The score of
each candidate recipe is computed as the negative distance between its cocktail representation and
the music-induced target cocktail representation. The parents of the next generation are then selected
proportionally to the ranks of the children’s scores and mutated to obtain the new generation. Further
constrains can disqualify candidate recipes: too much or too little alcohol, egg white without citrus,
more than one fizzy ingredients, more than 2 liqueurs, more than 3 liquors. After 50 generations,
the process converges on the final cocktail recipe, the one that matches best the target cocktail
representation. A separate network predicts the preparation type and the service glass such that the
system can output full instructions for the cocktail preparation.

Figure 2: Take the A
Train (Duke Ellington)
Shaken.

Evaluation. Looking at t-SNE representations and nearest neighbor
tests, it seems that the piece and cocktail representation spaces capture
well perceptual distances such that pieces/cocktails that sound/taste closer
perceptually (pieces from the same genre, the same composer; cocktails
from the same type, using similar ingredients) are indeed found to be close
in their respective representation spaces using the Euclidean metric. The
translation VAE generates similar cocktails for similar piano pieces. It
respects the alignment constraints I set and demonstrates specific biases in
the cocktail generation for clusters of similar piano pieces beyond these
constraints. In short, the TastyPiano system demonstrates perceptual
locality and subjectivity while respecting the alignment points I wanted.

Conclusion. Non-synesthetes can now taste music thanks to TastyPiano! I hope to build the physical
machine in the near future. Figure 2 shows what Duke Ellington’s Take the A Train could taste like.
Try it for yourself using the online demo: https://huggingface.co/spaces/ccolas/TastyPiano!
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