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Concepts and related work
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Intrinsically Motivated Learners

Jean Piaget
(1896-1980)

Intrinsic motivations

Defined by psychologists 
(Berlyne, 1950/1966; Czikszentmihalyi, 1990; Ryan 
& Deci, 2000; Kidd, 2012).

Credit: Francis Vachon

Implemented by reinforcement learning 
and developmental robotics researchers 
(Schmidhuber, 1991; Oudeyer & Kaplan, 2004, 
2007).

Scaled with deep RL (knowledge-based)
(Bellemare, 2016; Pathak, 2018; Burda, 2019).

http://www.youtube.com/watch?v=8vNxjwt2AqY&t=15


Goals

“A goal is a cognitive representation of a 
future object that the organism is committed 
to approach or avoid.”  
(Elliott & Fryer, 2008)
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Intrinsically Motivated Goal-Directed Learners

Open-ended 
repertoire of skills

AuditoryProprioceptive Visual Linguistic

Diversity of goal representations (modalities, abstraction)

Do good 
research
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Autotelic Learners

Autotelic Learning
Autotelic agents are intrinsically motivated to learn to 
represent, generate, pursue and master their own goals.

“Autotelic” comes from the Greek auto (self) and telos 
(end, goal) (Steels, 2004).

Autotelic agent

World

actionsstates
goals

rewards

internal goal 
        & rewards  

Repertoire of Skills

set of goal
representations         

goal-directed                              
behaviors

+
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Goal-conditioned
reward function

Evaluate 
performance

Learning 
algorithms

Update 
internal 
models

Goal sampling policy

Sample goal

Goal-reaching policy

Pursue 
goal

Autotelic Learning Loop
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SAGG-RIAC
SGIM-D

SGIM-ACTS
MACOB

UGL/MUGL

Intrinsically Motivated Goal Exploration Processes (IMGEPs) implement autotelic learning 
with competence-based intrinsic motivations.

SAGG-RIAC (Baranes, 2010); SGIM-D/SGIM-ACTS (Nguyen 2011/2012), MACOB (Forestier, 2016), Benureau & Oudeyer, 2016 UGL (Péré, 2018), MUGL (Laversanne-Finot, 2018)

Autotelic Learning with IMGEPs

Learning
to represent goals

Learning to evaluate 
goal-reaching

Learning
to sample goals

ReferencesAlgorithm families

Existing IMGEPs Baranes, 2010;
Nguyen, 2011/2012
Moulin-Frier, 2014;
Forestier, 2016.

Hand-coded 
representations

Hand-coded 
reward functions

Learning progress
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POP-IMGEPs

one policy → one goal

POP-IMGEPs and Reinforcement Learning

Simple
Good exploration
Fast for coarse solutions
No diff. requirements
Parallelizable 

Poor finetuning
Poor generalization
Low sample efficiency
Memory (archive)

Reinforcement Learning (RL)

one policy → many goal

Good finetuning
Good generalization
Better sample efficiency
Low memory (1 policy)

Requires differentiability
Low exploration
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GEP-PG, first combination of POP-IMGEP and RL (DDPG)     (Colas et al., 2018)

SAGG-RIAC
SGIM-D

SGIM-ACTS
MACOB

IM-RL
Deep RL

Goal-RL
Language RL

Reinforcement Learning (RL)

POP-IMGEPs

Autotelic RL
My work

RL-IMGEPs

RL (Sutton & Barto, 1998); IM-RL (Schmidhuber, 1991); Goal-RL (Schaul, 2015); Language RL (Herman, 2017)

Towards Autotelic Reinforcement Learning
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Learning
to represent goals

ReferencesAlgorithm families Learning to evaluate 
goal-reaching

Learning
to sample goals

Goal-Conditioned RL

Curriculum GC-RL Hand-coded 
representations

Hand-coded
reward functions

Learned sampling Florensa, 2018;
Sukhbaatar, 2018;
Colas, 2019

Florensa, 2018 Colas, 2019

Goal-conditioned RL 
(GC-RL)

Hand-coded 
representations

Hand-coded
reward functions

External goals Schaul, 2015; 
Andrychowicz, 2017

Andrychowicz, 2017

Schaul, 2015
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Learning
to represent goals

ReferencesAlgorithm families Learning to evaluate 
goal-reaching

Learning
to sample goals

Piagetian Autotelic RL

Piagetian Autotelic RL: agents learn goal representations and reward functions on 
their own through intrinsic motivations, environment interactions and learning.

Visual GC-RL Auto-encoders (visual 
goals)

Distance in latent 
space

Sampling with latent 
prior

Nair, 2018/2020;
Pong, 2019;
Pitis, 2020

Nair, 2018;
Pong, 2019

Unsupervised 
Skill discovery

Categorical
+ skill discriminability

Skill discriminabilitySampling with latent 
prior

Eysenbach, 2018;
Sharma, 2020;
Campos, 2020

Eysenbach, 2018



Vygotskian Autotelic 
Learning
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A complementary view on skill learning
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Social Autotelic Learners

Social Situatedness
Humans learn from others in a rich socio-cultural world.

Open-ended 
repertoire of skills
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Lev Vygotsky
(1896-1934)

Stimulus Response

Psychological 
tool

From elementary to 
higher mental functions

Vygotskian View on Human Development

Examples of psychological tool

Zone of Proximal Development (ZPD)

can’t do
can do with help (ZPD)
can do alone
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Language as a Cognitive Tool

Language

Reasoning

Analogies

Planning

Mental 
simulation

Creativity

Imagination

Abstraction

Vygotsky, 1934; Berk, 1994; Gentner, 1983/2017; Clark 1998; Hermer-Vazquez, 2001; Carruthers, 2002; Lupyan, 2012; Bergen, 2012.

Jean Piaget

Egocentric speech is a sign of 
cognitive immaturity. 

inside → outside     /

Lev Vygotsky

Egocentric speech is the 
internalization of social speech.

outside → inside      /

DECSTR

IMAGINE
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Vygotskian Autotelic Agents

Learning
to represent goals

ReferencesAlgorithm families Learning to evaluate 
goal-reaching

Learning
to sample goals

Linguistic GC-RL Learned linguistic 
representations

External rewards 
/ Hand-coded 
reward functions

External goals Hermann, 2017;
Chan, 2019; Jiang, 2019;
Chevalier-Boisvert, 2019;
Côté, 2019; Hill, 2020.

Vygotskian Autotelic Agent

Internalize cultural goal representations, goal selection and biases.

1. to learn autonomously
2. to perform structured exploration
3. to use language as a cognitive tool
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Evaluation of Autotelic Agents

Measure generalization
(performance on held-out set of goals)

Measure exploration 
(coverage, interesting interactions)

Measure transfer learning
(downstream tasks: fine-tuning, hierarchical setting)

Measure robustness
(non-controllable objects, nonstationarities)

Open the black box 
(learned representations, learned goal sampler,  developmental trajectories)
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IMAGINE
Linguistic creativity for exploration
and generalization.
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known goals

out-of-distribution

in-distribution

Towards Out-of-Distribution Goal Generation
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Creativity = novelty x appropriateness. 
(Simonton, 2012)

cat + bus
        = 

 cat-bus!

Linguistic creativity: generate new utterances (novelty) from 
a known grammar/known constructions (appropriateness). 
(Chomsky, 1957; Hoffmann, 2020)

Linguistic Creativity
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Playground Environment

plants furniture

living
things

animals
supplies

Procedural generation:

colors sizes

Objects:

  - Go (e.g. “go top left”)
  - Grasp (e.g. “grasp red plant”),
  - Grow (e.g. “grow any lion”).

...

Social descriptions 
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Autotelic exploration with 
social descriptions

Goal sampling
for 

autotelic exploration

Goal memory

Trajectories
and 

descriptions

Learn a goal-conditioned reward function
(Bahdanau, 2019)

Internalization of Linguistic Goals
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Creative autotelic exploration

Idea

Use language compositionality to 
systematically compose novel, 
out-of-distribution goals.

Internalized goal generation and reward 
functions let the agent train 
autonomously.

Language as a Cognitive Tool to Imagine Goals



Deep-Sets 
Architectures

(Zaheer, 2017)

Policy/Value function Reward function

description

attention
vector

attention
vector

reward
=

match
action / 
value

scene
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Object-Centered Inductive Biases

one-hot ty
pe

RGB co
de

siz
e

positi
on

grasped

(x3 objects)
Object-Based

Representations
(Spelke, 2003;
Mandler, 1999) object representation body representation

positi
on

grip
per s

tate

+

high-dimensional 
vectors

Sum aggregation

one-dimensional 
vectors

OR aggregation



IMAGINE

Reward 
function

Goal 
imagination

imagined goal reward
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Testing Systematic Generalization

 Several types of generalization

● Zero-shot policy: the agent can reach imagined goals.

● Zero-shot reward function: the agent can recognize matching scenes for new goals.

Goal-reaching
policy

actions
states

imagined goal



Train set

Enhancing generalization with goal imagination

Test set
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Testing Systematic Generalization

Beyond imagination 
generalization

Behavioral adaptation
Agents correct for overgeneralizations of 
their policy thanks to their reward function.
This effects transfers to similar, 
non-imagined goals.



Effect on exploration
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Effect on exploration

Social goals are biased towards 
objects and interactions.

Imagined goals are similarly biased
and creative: they drive agents to 
explore their world.

Feeding furnitureFeeding plants

Effects of a Creative Autotelic Exploration
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Distinctively human play

Children set arbitrary goals to themselves during pretend play. Problems constrain the search for 
hypotheses and plans such that children learn to efficiently generate new hypotheses by training on 
arbitrary problems (Chu & Schulz, 2020a,b).

Discussion

Simple mechanism for enhanced generalization

Internalization of reward function + systematic goal imagination let agents fine-tune their policy and 
generalize better. See also Good-Enough Compositional Data Augmentation (Andreas, 2019).



Mental simulation of possible futures,
a new form of language grounding.

30

DECSTR
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Motivations

objects

spacesocial 
partners

actions numbers

Core knowledge representations

Language

Spelke, 2004/2007;
Mandler, 1999/2012

How to combine concrete goals of preverbal infants with abstract linguistic goals?
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Semantic configuration

1 1 1 1 0 1 0 0 0

above predicatesclose predicates

111000100

111010100

000000000

111000101

Core Knowledge of Objects

Assume semantic spatial predicates



Social internalization
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Instruction-following

You stacked 
2 blocks

Put red on 
top of blue

Social interactions

blue and red 
are close

Language-conditioned
goal generator

Configurations 
memory

=?

Internal
reward function

Grounding Language in Goals

Pre-verbal skill learning
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Preverbal Skill Learning (Phase 1)
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Examples of descriptions:
  “you put red below green”
  “you got blue and green close”

and more abstract:
  “you built a pyramid”
  “you made a construction”
  “you got green on top”

We tested:

● precision (valid configurations) 
● recall (diversity).

Results:

● Near-perfect scores on the train set,
● Generalizes systematically to new sentences,
● Did not work on continuous state generation.

Social Internalization (Phase 2)

Conditional Variational Auto-Encoder

blue and red 
are close

LSTM

sampling

encoder
decoder

context

configuration

configuration

(C-VAE: Sohn, 2015)

,
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“Get green close to blue”

“Put green below red”

“Make a pyramid”

“Build a stack”

Instruction-Following (Phase 3)
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Strategy-Switching
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make a 
pyramid

Abstraction

Grounding language in core knowledge offers 
abstraction, categorization by examples.

Discussion

Abstract semantic predicates

Linguistic statements can be new predicates.

e.g.
“door is open”
“object is red”

1 1 1 1 0 1 0 0 0  

You stacked 
2 blocks

make a 
pyramid
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Vygotskian Autotelic Agents

Can I grow 
blue dogs ?

IMAGINE DECSTR

Social Partner

You grasped 
red cat

You stacked 2 
blocks
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Perspectives



Mental Life

Captionerssensations

41

Visual 
generators

Trajectory 
generators

Language 
generators

Policy
actions

sensations

goals

Artificial Mental Life

inner speech
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Open-Endedness

How to evaluate open-ended remains an open 
question (Hintze, 2019; Stanley, 2019).

Open-ended processes

● Natural evolution
● Music
● Science
● Human skill learning
● … 

Why not integrate agents into our open-ended 
cultural world? It seems to work for children.



Thanks!
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