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Motivations

(e, o
SARS-Cov-2 appeared in Wuhan (China) in December 2019
No Vaccine until December | 1th 2020
Worldwide implementation of Non-pharmaceutical Intervention: from less stringent (masks,
hand washing...) to most stringent complete lock-down.
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Note: Average case-fatality rates and transmission numbers are shown. Estimates of case-fatality rates can vary, and numbers for

the new coronavirus are preliminary estimates.

Need for on/off strategies




Designing Intervention Strategies is Difficult
o

Pre-defined strategies are bound to be suboptimal:

|) the space of potential strategies can be large, heterogeneous and multi-scale (Halloran et al., 2008);

2) their impact on the epidemic is often difficult to predict (Ferguson et al. 2020; Salje et al. 2020; Prague
et al. 2020);

3) the problem is multi-objective by essence: it often involves public health objectives like the
minimization of the death toll or the saturation of intensive care units, but also societal and economic
sustainability.
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Related Approaches - Existing works

o
High-level contributions Computational contributions
Identification of methods available to solve the Implementation of optimization processes
problem

Different epidemiological models(Yaesoubi et al.
(Alamo et al. 2020) Road-map from access to data 2020, Chandak et al. 2020, Kompella et al. 2020).
to decision step.
Different optimization methods

(Shearer et al. 2020) How to define social political, (Tarracata et al 2020, Chandak et al. 2020, Arango et al.
ethical, epidemiological (...) costs. 2020, Charpentier et al. 2020, Miikakulainen et al.
2020, Elie et al. 2020).

(Yanez et al. 2020) Description of general
framework for disease spread control based on Different cost functions (Libin et al. 2020, Probert

reinforcement learning in general. — et al. 2019,Yaesoubi et al. 2016).
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Contribution - The EpidemiOptim ibrary

o

EpidemiOptim is a toolbox that provides a framework to facilitate collaborations between researchers in
epidemiology, economics and machine learning.

EpidemiOptim

& python
Epidemiologists, Computer scientists
economists Machine learners

Public health
Policy makers




The Epidemic Control Problem




Epidemic Control Problem and RL framework
o

The Epidemic Control Problem: Find intervention strategies to mitigate the impact of an epidemic.

Requires:
— one or several epidemiological model(s) (which epidemic?)
— cost functions to define the objective (what do we want to mitigate?)
— action modalities (what is the space of intervention strategies?)
— an optimization algorithm (how do we search the space of intervention strategies?)

Environment




Peculiarities of the Epidemic Control Problem

A Multi Objective Problem:
The epidemic control problem is multi-objective by essence (e.g. health and economic costs).

— using an aggregated cost as convex combinations of costs,
— using multi-objective algorithms.

Handling Time-Limits:

Optimization algorithm often need finite learning episodes, but epidemics might not be finite.We want to
avoid an “after me, the flood” effect.

— RL agents must be unaware of their position within the episode,
— RL agents must continue to bootstrap at the last timestep (no “done” signal).

See Time Limits in Reinforcement Learning - Pardo et al., 2018 for a discussion.



EpidemiOptim Toolbox Organization




Interface

['algo_id'],

[ 'num_train_steps'])

1s[ *model_params'])

ns['cost_params'])

arams [ 'sim_horizon'],
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Utils

Comparison tools:

We want to easily compare approaches, both visually and statistically.

Visualization tools:
We want to explore the results visually, interact with policies and models.

We want accessibility for non-expert users (e.g. general public, decision makers, etc.)
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Case Study

Lock-down policies for COVID-19 Epidemic
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COVID-19 Case Study
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10000

Date
Multiple lockdown on-off lockdown is a worldwide adopted strategy:
- Reduction in the number of Hospitalization (and therefore incidence and additional deaths)
- High economical costs
— In France: 2 months lock-down in march led to 35% of activity reduction (INSEE) and 32% of
GDP reduction - 120€billion gap (OFCE).
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Epidemiological Model

Lockdown Parameters are
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Distribution of Models
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o
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Epidemics is not directly detected.
We assume a delay uniformly distributed
[0;14] days before control policies start.
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Cost Functions

o

Health cost function :
- Minimizing the number of deaths

umber

of death (log-scale)

Number of
recovered from COVID-19

} -
Chealth (t) = 0.005R(t)

National cumulative n

Economic cost function (Havik et al.,2014):
- Loss in Gross Domestic Product (GDP)
- Depend on the population unable to work : G(t) = I(t) + H(t) + 0.005R(t)

Exogeneous Employment rate
Technical progress pioy Capital
Level of partial Elasticity
Employment l
V

Ceconomic(t) =Yy — Ang(l — u(t)))\(N — G(t))l—’Yk

T Initial Population

Initial . ;
size
GDP Capital stock
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Optimization Algorithms

Deep Q-Networks (DQN) (Mnih et al,, 2013)

Alternates between:
— data collection: interact with epidemics and collect transitions (s, a, s’, costs)
— data exploitation: train a Q network: Q(s, a).

Caggregated . (1 . 5) X C1hea1th + 6 X Ceconomic

B
B

07 Caggregated a Chealth
L,

Caggregated . C'economic

Playing Atari with Deep Reinforcement Learning - Mnih et al,, 2013
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Optimization Algorithms

DQN variants
Goal DQN (Schaul et al,, 2015; Badia et al., 2020)

{3 is part of the inputs to the Q network.The agent is now “goal-conditioned”, where
the goal is a particular aggregated objective parameterized by [3.

Goal DQN with constraints (Goal DQN-C) (modified from Badia et al., 2020)

Goals are now parameterized by constraints expressed as maximal number of deaths
M ea1th and maximal economic cost Meconomic -

L 1:t t _
Mhealth D if Chea]th > Mhealtha then Caggregated = 1000
B 1:t t e
Meconomic . lf Ceconomic > Meconomic; then Oaggregated = 1000

Universal value function approximators - Schaul et al., 2015
Never Give Up - Badia et al., 2020
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Optimization Algorithms

NSGA-Il (Deb et al, 2002)

NSGA-Il is a state-of-the-art multi-objective algorithm based on a genetic algorithms.
It produces a Pareto front of policies instead of a single policy.

A
% 8 S
% 2 8 o S Pareto front: set of
undominated solutions.
CostA 8 o =
%® &
8
8
>
Cost B

A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
Deb et al., 2002



Results

DQN

Beta = 0.8
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Results - Goal DQN

Beta = 0.65
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Results - Goal DQN with Constraints

Beta = 0.7 Max # deaths = 30000
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Results - NSGA-II
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Results - Goal DQN: influence of beta

1.0—— = Health cost = Economic cost )_
~ 0.8
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)
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— Low (3 — High 3

— Health cost is more important
— Goal DQN minimizes it (blue)

— Economic cost is more important
— Goal DQN minimizes it (orange)
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Results - Algorithms Comparison

o
= Goal DQN DQN _ == Goal DQN DQN
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2D comparisons
\ DQN GOAL DQN GOAL DQN-C NSGA-II (same) NSGA-II (x15)
DQN N/A 0.069 0.55 0.018 0.045
GOAL DQN N/A 0.046 0.84 0.0057
p-values GOAL DQN-C N/A 0.21 0.35
(uncorrected) NSGA-II (same) N/A 3.2 x 10*
NSGA-II (x15) N/A




Interactive Visualization

https://epidemioptim.bordeaux.inria.fr/
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https://epidemioptim.bordeaux.inria.fr/

Case Study Conclusion

Algorithm comparison

— DQN performs better in low death toll regime
— NSGA-II performs better in low economic cost regime

Mainly two types of strategies

— Early lockdown or none at all: relies on herd immunity (e.g. Sweden)
— Short-term lockdowns to control epidemic waves (most European countries)

Lockdowns implemented by countries are longer than ours (probably political and
practical reasons).

Many approximations and simplifications

— This case-study demonstrate the importance of EpidemiOptim.
We do not make any real-world recommendation!
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Discussion
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Discussion

Automatic optimization for decision making

— Optimization algorithms should not replace decision makers.

— Explicit models are better than mental models (exposed assumptions, explainability, easier to discuss).

— Optimization can help integrate long term effect and explore spaces of intervention strategies.
— Diversifying models and optimization algorithms reduces model- and algorithm-induced biases.

Collaborative toolbox

— To be extended to more epidemiological models, cost functions, optimization algorithms, visualization
tools, etc.

General approach

— The same approach can be used to study optimization in any dynamical models (e.g. vaccination
processes, economic models, ODE systems etc.)
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Resources

Paper: https://arxiv.org/abs/2010.04452

Code: https://github.com/flowersteam/EpidemiOptim

Interactive demo (coming soon): https://epidemioptim.bordeaux.inria.fr/

Contact; cedric.colas@inria.fr - melanie.pragsue@inria.fr
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