Towards a Vygotskian Autotelic Artificial Intelligence

The Internalization of Cognitive Tools from Rich Socio-Cultural Worlds

<u>Cédric Colas</u>*, Tristan Karch*, Thomas Carta, Clément Moulin-Frier, Pierre-Yves Oudeyer (Inria, Univ. de Bordeaux)

* equal contribution - cedric.colas@inria.fr

Why Am I Here?

To move forward in AI, we need to immerse agents into rich socio-cultural worlds, to let them turn social interactions into cognitive tools.

We need LCM!

Piagetian Learning

Intrinsically motivated goal directed learners.

Reinforcement Learning (RL)

The RL framework

RL can solve some problems better than humans.

Atari Games

 \rightarrow

... but they can only solve a specific predefined task at a time.

Intrinsically Motivated Learners

Jean Piaget (1896-1980)

Intrinsic motivations

Defined by psychologists (Berlyne, 1950/1966; Czikszentmihalyi, 1990; Ryan & Deci, 2000; Kidd, 2012).

Implemented by RL and developmental robotics researchers (Schmidhuber, 1991; Oudeyer & Kaplan, 2004, 2007).

Scaled with deep learning (Bellemare, 2016; Pathak, 2018; Burda, 2019).

Credit: Francis Vachon

Autotelic Learners

Autotelic Learning

(Steels, 2004; Colas, 2021)

Autotelic agents are intrinsically motivated to learn to represent, generate, pursue and master their own goals.

Vygotskian Learning

Turning socio-cultural interactions into cognitive tools.

Social Autotelic Learners

Open-ended repertoire of skills

Socio-Cultural Situatedness Humans learn from others in a rich socio-cultural world.

Vygotskian View on Human Development

Lev Vygotsky (1896-1934) Zone of Proximal Development (ZPD)

Examples of psychological tool

Language as a Cognitive Tool

Vygotsky, 1934; Berk, 1994; Gentner, 1983/2017; Clark 1998; Hermer-Vazquez, 2001; Carruthers, 2002; Lupyan, 2012; Bergen, 2012.

Vygotskian Autotelic Al

IMAGINE

Linguistic creativity for exploration and generalization.

Towards Out-of-Distribution Goal Generation +

Linguistic Creativity

Creativity = novelty x appropriateness. (Simonton, 2012)

Linguistic creativity: generate new utterances (novelty) from a known grammar/known constructions (appropriateness). (Chomsky, 1957; Hoffmann, 2020)

Autotelic exploration with social descriptions

Learn a goal-conditioned reward function (extractive model) (Bahdanau, 2019)

Language as a Cognitive Tool to Imagine Goals +

Idea

Use language compositionality to systematically compose novel, out-of-distribution goals.

Internalized goal generation and reward functions let the agent train autonomously.

Creative autotelic exploration

New Cognitive Functions

Abstraction

Extractive models

Productive models

Agents now represent cultural concepts such as colors (red), objects (bonsaï) and categories (animals).

Creative Exploration

Agents can generate creative goals that drive their exploration.

Systematic Generalization

Agents can represent and achieve new goals by systematic generalization.

Cultural Attention

Agents invent goals based on culturallytransmitted concepts worth of attention (object, attributes, object interactions).

The agent imagines it could feed plants and furniture.

VR technology

Video games industry

Challenge #1 Immersion in rich socio-cultural worlds Challenge #2 Artificial mental life with extractive and productive models

19

Challenges

T5 model (Raffel et al., 2019)

But also:

- Planning (Huang et al., 2022, Ahn et al., 2022)
- Common sense (West et al., 2022)
- Cultural differences (Hershcovich et al., 2022)
- Moral values (Schramowski et al., 2022)

•

...

Joke understanding by the Flamingo model (grey) (Alayrac et al., 2022)

From @antoine77340

Challenge #3 Leveraging large language models as cultural models

Thanks!

Collaborators:

Tristan Karch

Thomas Carta

Clément Moulin-Frier

Pierre-Yves Oudeyer

<u>cedric.colas@inria.fr</u> <u>https://ccolas.github.io/</u> <u>https://github.com/flowersteam</u>

NN